Views 37 Likes Comments Comment
Like if this guide is helpful

Once I built a Railroad (and made it run)

Initially I enlisted the help of a music student friend during his summer holidays to prepare the foundation of the track. Over the next few weeks, armed with only a spade and wheelbarrow, he visibly lost weight. Especially as he dug the cutting round the back of the house. At a rough estimate, he must have moved fifty tons of rock, stone and soil, not bad for a trombone player!

His other part-time job in a garden centre made it slightly cheaper to get the weed barrier plastic sheeting, which was to go under the ballast. His staff discount was to come in handy, as we were going to need a lot….. Four hundred feet of this material was laid in position, and then covered with twenty tons of gravel ballast. The weeds still grow in the ballast, but are easily pulled out. Many miles were covered levelling and trampling the gravel into place. I did not see it as being necessary to hire a vibrating roller, as many feet seemed to do the same job.

Next, the sleepers! On initially pricing these from specialist suppliers, the cost seemed prohibitive, the solution was to buy tanalised 4in. x 1 in. timber from a local fencing manufacturer, who also cut them to the required length of 13 inches and treated the cut ends. A top tip for sleeper maintenance is to give them an annual application of used diesel engine oil from my old Landrover.

When the sleepers were laid in position, the railway was beginning to take shape. Now for the track. Once again specialist suppliers prices, especially aluminium, were out of the reach of my pocket. So the type of construction chosen was the same as W.R.S.L.S. club track, which is 1in.x ½ in. flat mild steel bar for the rails, with 1in. x 1/8in. flat mild steel bar, cut to 3in. lengths for the chairs. These were pre-drilled in a jig, and welded in place at 9 in. intervals on the rails. The welding was beyond my capabilities, I tried it once and only managed to weld things to the vice. So all welding was done by my friend John "electric glue gun" Bolt, whose photographs also illustrate this article.

We were lucky to have a long, and fairly level length of garden wall on which to weld the track together. The straight sections of track were constructed in their entirety on the wall, with cross ties welded in, using a track gauge after every third chair. The whole assembly was then screwed to the sleepers with stainless steel self-tapping screws. The straight sections were then placed in position, the full length down each side of the property. At this point it is worth mentioning that nowhere in the finished track did we use expansion joints, as these seemed to be pointless items of over engineering in this scale. All the sections were simply MIG welded together (all the way round) and cleaned up with an angle grinder. That was the easy part. In order to safely hurtle round the garden at a great rate of knots, super-elevation was built into the front curve. The geometry involved in this proved difficult as we didn’t have the luxury of bending rollers, or any measuring equipment more sophisticated than a ruler! What we did have was a strange device borrowed from W.R.S.L.S., which is sort of a claw device with a hefty Allen bolt, this bends the track but must be used at 3in. intervals. Little and often is the secret to track bending using this method. Arms like Popeye developed after doing this for a while.

Now don’t be misled into thinking that everything went smoothly and swiftly. Not only did work grind to a halt as I felt the need to run the engine after every section of track went down, but a fox ate John’s welding glove! All the kneeling and bending took it’s toll on John’s knees and back, but luckily one of my recording studio clients, who is a professional holistic healer, called in for some cassettes and gave John a therapeutic zap, therefore allowing him to get back to work on the railway.

The sleepers were laid roughly in position on the ballast, chairs and spreaders were welded to one track only on the wall, which was then bent into position on the sleepers. Then the second rail was slowly bent parallel to the first and welded to the spreaders using a 7 3/8in. track gauge which was also used while screwing the chairs to the sleepers. The chairs on the second rail were welded in situ, with the welding plant following round the track on the newly completed passenger truck chassis. This process was repeated for all the curves. To make the track interesting, a reverse curve was put in, this will also allow for a future siding, handily situated by the water tap in the front garden.

Work on the track in the back garden was slightly delayed due to the building of a York stone flagged patio, which fell under the general heading of "work on the house", and to show that I didn’t spend all my time working on my hobby.

The final piece of track was laid across the drive in front of the garage/workshop. We had problems bending this as we laid it in the dark late one night. This section of track was then cemented in place in order for the car to run over it smoothly.

Once the foundations had been prepared, the actual construction of the track only took 100 hours! In the three years the track has been down, it has neither moved, distorted or sunk, and running is very smooth, derailments are few.

A handy feature of the property was the old oil fired central heating boiler room. Although this is part of the house, it is conveniently positioned to make an ideal engine shed. A section of track was made to run into the shed, over a two piece steel door. A set of points will be added one day, for now a board is used to get the engine to and from the shed road.

Since completion, many hours in steam around my garden has made the effort worthwhile.

Have something to share, create your own guide... Write a guide
Explore more guides