Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
About this product
Product Identifiers
PublisherAmerican Mathematical Society
ISBN-101470423073
ISBN-139781470423070
eBay Product ID (ePID)224565043
Product Key Features
Number of Pages296 Pages
Publication NameQuiver Representations and Quiver Varieties
LanguageEnglish
Publication Year2016
SubjectGraphic Methods, Algebra / General
TypeTextbook
Subject AreaMathematics
AuthorAlexander Kirillov
SeriesGraduate Studies in Mathematics Ser.
FormatHardcover
Dimensions
Item Height0.8 in
Item Weight24.7 Oz
Item Length10.3 in
Item Width7.4 in
Additional Product Features
Intended AudienceScholarly & Professional
LCCN2016-018803
ReviewsThe book should serve as a valuable source for readers who want to understand various levels of deep connections between quiver representations, Lie theory, quantum groups, and geometric representation theory...The beautiful results discussed in the present book touch on several mathematical areas, therefore, the inclusion of background material and several examples make it convenient to learn the subject." - Mátyás Domokos, Mathematical Reviews "With an adequate background in Lie theory and algebraic geometry, the book is accessible to an interested reader... it engages the reader to fill in some arguments or to look for a result in the references. As such, the book can be used for a topics course on its subjects." - Felipe Zaldivar, MAA Reviews "...a concise guide to representation theory of quiver representations for beginner and advanced researchers." - Justyna Kosakowska, Zentralblatt Math, "With an adequate background in Lie theory and algebraic geometry, the book is accessible to an interested reader...it engages the reader to fill in some arguments or to look for a result in the references. As such, the book can be used for a topics course on its subjects." --Felipe Zaldivar, MAA Reviews "...a concise guide to representation theory of quiver representations for beginner and advanced researchers." --Justyna Kosakowska, Zentralblatt Math
Dewey Edition23
Series Volume Number174
IllustratedYes
Dewey Decimal512/.46
Table Of ContentPart 1. Dynkin Quivers Chapter 1. Basic Theory Chapter 2. Geometry of Orbits Chapter 3. Gabriel's Theorem Chapter 4. Hall Algebras Chapter 5. Double Quivers Part 2. Quivers of Infinite Type Chapter 6. Coxeter Functor and Preprojective Representations Chapter 7. Tame and Wild Quivers Chapter 8. McKay Correspondence and Representations of Euclidean Quivers Chapter 9. Hamiltonian Reduction and Geometric Invariant Theory Chapter 10. Quiver Varieties Chapter 11. Jordan Quiver and Hilbert Schemes Chapter 12. Kleinian Singularities and Geometric McKay Correspondence Chapter 13. Geometric Realization of Kac-Moody Lie Algebras Appendix Bibliography
SynopsisThis book is an introduction to the theory of quiver representations and quiver varieties, starting with basic definitions and ending with Nakajima's work on quiver varieties and the geometric realization of Kac-Moody Lie algebras. The first part of the book is devoted to the classical theory of quivers of finite type. Here the exposition is mostly self-contained and all important proofs are presented in detail. The second part contains the more recent topics of quiver theory that are related to quivers of infinite type: Coxeter functor, tame and wild quivers, McKay correspondence, and representations of Euclidean quivers. In the third part, topics related to geometric aspects of quiver theory are discussed, such as quiver varieties, Hilbert schemes, and the geometric realization of Kac-Moody algebras. Here some of the more technical proofs are omitted; instead only the statements and some ideas of the proofs are given, and the reader is referred to original papers for details. The exposition in the book requires only a basic knowledge of algebraic geometry, differential geometry, and the theory of Lie groups and Lie algebras. Some sections use the language of derived categories; however, the use of this language is reduced to a minimum. The many examples make the book accessible to graduate students who want to learn about quivers, their representations, and their relations to algebraic geometry and Lie algebras., Provides an introduction to the theory of quiver representations and quiver varieties, starting with basic definitions and ending with Nakajima's work on quiver varieties and the geometric realization of Kac-Moody Lie algebras. The exposition in the book requires only a basic knowledge of algebraic geometry, differential geometry, and the theory of Lie groups and Lie algebras.