Product Key Features
Number of PagesXiv, 318 Pages
LanguageEnglish
Publication NameBinary Quadratic Forms : an Algorithmic Approach
Publication Year2010
SubjectComputer Science, General, Algebra / General, Number Theory
TypeTextbook
AuthorJohannes Buchmann, Ulrich Vollmer
Subject AreaMathematics, Computers
SeriesAlgorithms and Computation in Mathematics Ser.
FormatTrade Paperback
Additional Product Features
Intended AudienceScholarly & Professional
ReviewsFrom the reviews: "Quadratic Field Theory is the best platform for the development of a computer viewpoint. Such an idea is not dominant in earlier texts on quadratic forms ... . this book reads like a continuous program with major topics occurring as subroutines. The theory appears as 'program comments,' accompanied by numerical examples. ... An appendix explaining linear algebra (bases and matrices) helps make this work ideal as a self-contained well-motivated textbook for computer-oriented students at any level and as a reference book." (Harvey Cohn, Zentralblatt MATH, Vol. 1125 (2), 2008) "The book under discussion contains the classical Gau -Dirichlet representation theory of integral binary quadric forms. ... Many of the algorithms presented in this book are described in full detail. The whole text is very carefully written. It is therefore also well suited for beginners as in addition no special knowledge on Number Theory is necessary to understand the text. It can also be recommended to teachers who give courses in Number Theory or Computational Algebra." (J. Schoissengeier, Monatshefte fr Mathematik, Vol. 156 (3), March, 2009), From the reviews:"Quadratic Field Theory is the best platform for the development of a computer viewpoint. Such an idea is not dominant in earlier texts on quadratic forms … . this book reads like a continuous program with major topics occurring as subroutines. The theory appears as 'program comments,' accompanied by numerical examples. … An appendix explaining linear algebra (bases and matrices) helps make this work ideal as a self-contained well-motivated textbook for computer-oriented students at any level and as a reference book." (Harvey Cohn, Zentralblatt MATH, Vol. 1125 (2), 2008)The book under discussion contains the classical Gauß -Dirichlet representation theory of integral binary quadric forms. … Many of the algorithms presented in this book are described in full detail. The whole text is very carefully written. It is therefore also well suited for beginners as in addition no special knowledge on Number Theory is necessary to understand the text. It can also be recommended to teachers who give courses in Number Theory or Computational Algebra. (J. Schoissengeier, Monatshefte für Mathematik, Vol. 156 (3), March, 2009), From the reviews: "Quadratic Field Theory is the best platform for the development of a computer viewpoint. Such an idea is not dominant in earlier texts on quadratic forms ... . this book reads like a continuous program with major topics occurring as subroutines. The theory appears as 'program comments,' accompanied by numerical examples. ... An appendix explaining linear algebra (bases and matrices) helps make this work ideal as a self-contained well-motivated textbook for computer-oriented students at any level and as a reference book." (Harvey Cohn, Zentralblatt MATH, Vol. 1125 (2), 2008) "The book under discussion contains the classical Gauß -Dirichlet representation theory of integral binary quadric forms. ... Many of the algorithms presented in this book are described in full detail. The whole text is very carefully written. It is therefore also well suited for beginners as in addition no special knowledge on Number Theory is necessary to understand the text. It can also be recommended to teachers who give courses in Number Theory or Computational Algebra." (J. Schoissengeier, Monatshefte für Mathematik, Vol. 156 (3), March, 2009), From the reviews:"Quadratic Field Theory is the best platform for the development of a computer viewpoint. Such an idea is not dominant in earlier texts on quadratic forms … . this book reads like a continuous program with major topics occurring as subroutines. The theory appears as 'program comments,' accompanied by numerical examples. … An appendix explaining linear algebra (bases and matrices) helps make this work ideal as a self-contained well-motivated textbook for computer-oriented students at any level and as a reference book." (Harvey Cohn, Zentralblatt MATH, Vol. 1125 (2), 2008)
Dewey Edition22
Series Volume Number20
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal512.7/4
Table Of ContentBinary Quadratic Forms.- Equivalence of Forms.- Constructing Forms.- Forms, Bases, Points, and Lattices.- Reduction of Positive Definite Forms.- Reduction of Indefinite Forms.- Multiplicative Lattices.- Quadratic Number Fields.- Class Groups.- Infrastructure.- Subexponential Algorithms.- Cryptographic Applications.
SynopsisThe book deals with algorithmic problems related to binary quadratic forms. Written by a world leader in number theory, it is the only book focusing on the algorithmic aspects of the theory. It deals with problems such as finding the representations of an integer by a form with integer coefficients, finding the minimum of a form with real coefficients and deciding equivalence of two forms. In order to solve those problems, the book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography. It requires only basic mathematical knowledge., This book deals with algorithmic problems concerning binary quadratic forms 2 2 f(X,Y)= aX +bXY +cY with integer coe?cients a, b, c, the mathem- ical theories that permit the solution of these problems, and applications to cryptography. A considerable part of the theory is developed for forms with real coe?cients and it is shown that forms with integer coe?cients appear in a natural way. Much of the progress of number theory has been stimulated by the study of concrete computational problems. Deep theories were developed from the classic time of Euler and Gauss onwards to this day that made the solutions ofmanyof theseproblemspossible.Algorithmicsolutionsandtheirproperties became an object of study in their own right. Thisbookintertwinestheexpositionofoneveryclassicalstrandofnumber theory with the presentation and analysis of algorithms both classical and modern which solve its motivating problems. This algorithmic approach will lead the reader, we hope, not only to an understanding of theory and solution methods, but also to an appreciation of the e?ciency with which solutions can be reached. The computer age has led to a marked advancement of algorithmic - search. On the one hand, computers make it feasible to solve very hard pr- lems such as the solution of Pell equations with large coe?cients. On the other, the application of number theory in public-key cryptography increased the urgency for establishing the complexity of several computational pr- lems: many a computer system stays only secure as long as these problems remain intractable., This book deals with algorithmic problems concerning binary quadratic forms 2 2 f(X, Y)= aX +bXY +cY with integer coe'cients a, b, c, the mathem- ical theories that permit the solution of these problems, and applications to cryptography. A considerable part of the theory is developed for forms with real coe'cients and it is shown that forms with integer coe'cients appear in a natural way. Much of the progress of number theory has been stimulated by the study of concrete computational problems. Deep theories were developed from the classic time of Euler and Gauss onwards to this day that made the solutions ofmanyof theseproblemspossible.Algorithmicsolutionsandtheirproperties became an object of study in their own right. Thisbookintertwinestheexpositionofoneveryclassicalstrandofnumber theory with the presentation and analysis of algorithms both classical and modern which solve its motivating problems. This algorithmic approach will lead the reader, we hope, not only to an understanding of theory and solution methods, but also to an appreciation of the e'ciency with which solutions can be reached. The computer age has led to a marked advancement of algorithmic - search. On the one hand, computers make it feasible to solve very hard pr- lems such as the solution of Pell equations with large coe'cients. On the other, the application of number theory in public-key cryptography increased the urgency for establishing the complexity of several computational pr- lems: many a computer system stays only secure as long as these problems remain intractable, This book deals with algorithmic problems concerning binary quadratic forms 2 2 f(X,Y)= aX +bXY +cY with integer coe'cients a, b, c, the mathem- ical theories that permit the solution of these problems, and applications to cryptography. A considerable part of the theory is developed for forms with real coe'cients and it is shown that forms with integer coe'cients appear in a natural way. Much of the progress of number theory has been stimulated by the study of concrete computational problems. Deep theories were developed from the classic time of Euler and Gauss onwards to this day that made the solutions ofmanyof theseproblemspossible.Algorithmicsolutionsandtheirproperties became an object of study in their own right. Thisbookintertwinestheexpositionofoneveryclassicalstrandofnumber theory with the presentation and analysis of algorithms both classical and modern which solve its motivating problems. This algorithmic approach will lead the reader, we hope, not only to an understanding of theory and solution methods, but also to an appreciation of the e'ciency with which solutions can be reached. The computer age has led to a marked advancement of algorithmic - search. On the one hand, computers make it feasible to solve very hard pr- lems such as the solution of Pell equations with large coe'cients. On the other, the application of number theory in public-key cryptography increased the urgency for establishing the complexity of several computational pr- lems: many a computer system stays only secure as long as these problems remain intractable.
LC Classification NumberQA150-272