Data Science with Python and Dask by Jesse Daniel (2019, Trade Paperback)

ZUBER (265437)
97.9% positive Feedback
Price:
US $20.95
Approximately£15.39
+ $21.41 postage
Estimated delivery Fri, 4 Jul - Tue, 15 Jul
Returns:
30 days return. Buyer pays for return postage. If you use an eBay delivery label, it will be deducted from your refund amount.
Condition:
New
DATA SCIENCE WITH PYTHON AND DASK By Jesse C. Daniel **BRAND NEW**.

About this product

Product Identifiers

PublisherManning Publications Co. LLC
ISBN-101617295604
ISBN-139781617295607
eBay Product ID (ePID)11038746837

Product Key Features

Number of Pages296 Pages
Publication NameData Science with Python and Dask
LanguageEnglish
Publication Year2019
SubjectComputer Science, Data Processing, Databases / Data Mining, Programming Languages / Python
TypeTextbook
AuthorJesse Daniel
Subject AreaComputers
FormatTrade Paperback

Dimensions

Item Height0.6 in
Item Weight18.5 Oz
Item Length9.2 in
Item Width7.4 in

Additional Product Features

Intended AudienceScholarly & Professional
LCCN2019-285629
Dewey Edition23
IllustratedYes
Dewey Decimal006.312
SynopsisSummary Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book. About the Technology An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease. About the Book Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's inside Working with large, structured and unstructured datasets Visualization with Seaborn and Datashader Implementing your own algorithms Building distributed apps with Dask Distributed Packaging and deploying Dask apps About the Reader For data scientists and developers with experience using Python and the PyData stack. About the Author Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company. Table of Contents PART 1 - The Building Blocks of scalable computing Why scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying Dask Working with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask, Summary Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book. About the Technology An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease. About the Book Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's inside Working with large, structured and unstructured datasets Visualization with Seaborn and Datashader Implementing your own algorithms Building distributed apps with Dask Distributed Packaging and deploying Dask apps About the Reader For data scientists and developers with experience using Python and the PyData stack. About the Author Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company. Table of Contents PART 1 - The Building Blocks of scalable computing Why scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying Dask Working with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask, Large datasets tend to be distributed, non-uniform, and prone to change. Dask simplifies the process of ingesting, filtering, and transforming data, reducing or eliminating the need for a heavyweight framework like Spark. Data Science at Scale with Python and Dask teaches readers how to build distributed data projects that can handle huge amounts of data. The book introduces Dask Data Frames and teaches helpful code patterns to streamline the reader's analysis. Key Features Working with large structured datasets Writing DataFrames Cleaningand visualizing DataFrames Machine learning with Dask-ML Working with Bags and Arrays Written for data engineers and scientists with experience using Python. Knowledge of the PyData stack (Pandas, NumPy, and Scikit-learn) will be helpful. No experience with low-level parallelism is required. About the technology Dask is a self-contained, easily extendible library designed to query, stream, filter, and consolidate huge datasets. Jesse Daniel has five years of experience writing applications in Python, including three years working with in the PyData stack (Pandas, NumPy, SciPy, Scikit-Learn). Jesse joined the faculty of the University of Denver in 2016 as an adjunct professor of business information and analytics, where he currently teaches a Python for Data Science course.
LC Classification NumberQA76.9.D343

All listings for this product

Buy it now
Any condition
New
Pre-owned
No ratings or reviews yet
Be the first to write a review