Problems and Snapshots from the World of Probability by Gunnar Blom, Lars Holst and Dennis Sandell (1993, Trade Paperback)

Bargain Book Stores (1129460)
99.2% positive Feedback
Price:
US $64.88
Approximately£48.35
+ $10.50 postage
Estimated delivery Tue, 27 May - Mon, 2 Jun
Returns:
No returns, but backed by the eBay Money Back Guarantee.
Condition:
New
Format: Paperback or Softback. Item Availability.

About this product

Product Identifiers

PublisherSpringer New York
ISBN-100387941614
ISBN-139780387941615
eBay Product ID (ePID)153750

Product Key Features

Number of PagesXii, 256 Pages
LanguageEnglish
Publication NameProblems and Snapshots from the World of Probability
Publication Year1993
SubjectProbability & Statistics / General
TypeTextbook
Subject AreaMathematics
AuthorGunnar Blom, Lars Holst, Dennis Sandell
FormatTrade Paperback

Dimensions

Item Height0.2 in
Item Weight28.2 Oz
Item Length9.3 in
Item Width6.1 in

Additional Product Features

Intended AudienceScholarly & Professional
LCCN93-031828
Dewey Edition20
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal519.2
Table Of Content1. Welcoming problems.- 1.1 The friendly illiterate.- 1.2 Tourist with a short memory.- 1.3 The car and the goats.- 1.4 Patterns I.- 1.5 Classical random walk I.- 1.6 Number of walks until no shoes.- 1.7 Banach's match box problem.- 1.8 The generous king.- 2. Basic probability theory I.- 2.1 Remarkable conditional probabilities.- 2.2 Exchangeability I.- 2.3 Exchangeability II.- 2.4 Combinations of events I.- 2.5 Problems concerning random numbers.- 2.6 Zero-one random variables I.- 3. Basic probability theory II.- 3.1 A trick for determining expectations.- 3.2 Probability generating functions.- 3.3 People at the corners of a triangle.- 3.4 Factorial generating functions.- 3.5 Zero-one random variables II.- 3.6 Combinations of events II.- 4. Topics from early days I.- 4.1 Cardano -- a pioneer.- 4.2 Birth of probability.- 4.3 The division problem.- 4.4 Huygens's second problem.- 4.5 Huygens's fifth problem.- 4.6 Points when throwing several dice.- 4.7 Bernoulli and the game of tennis.- 5. Topics from early days II.- 5.1 History of some common distributions.- 5.2 Waldegrave's problem I.- 5.3 Petersburg paradox.- 5.4 Rencontre I.- 5.5 Occupancy I.- 5.6 Stirling numbers of the second kind.- 5.7 Bayes's theorem and Law of Succession.- 5.8 Ménage I.- 6. Random permutations.- 6.1 Runs I.- 6.2 Cycles in permutations.- 6.3 Stirling numbers of the first kind.- 6.4 Ascents in permutations.- 6.5 Eulerian numbers.- 6.6 Exceedances in permutations.- 6.7 Price fluctuations.- 6.8 Oscillations I.- 6.9 Oscillations II.- 7. Miscellaneous I.- 7.1 Birthdays.- 7.2 Poker.- 7.3 Negative binomial.- 7.4 Negative hypergeometric I.- 7.5 Coupon collecting I.- 7.6 Coupon collecting II.- 7.7 Ménage II.- 7.8 Rencontre II.- 8. Poisson approximation.- 8.1 Similar pairs and triplets.- 8.2 ALotto problem.- 8.3 Variation distance.- 8.4 Poisson-binomial.- 8.5 Rencontre III.- 8.6 Ménage III.- 8.7 Occupancy II.- 9. Miscellaneous II.- 9.1 Birthdays and similar triplets.- 9.2 Comparison of random numbers.- 9.3 Grouping by random division.- 9.4 Records I.- 9.5 Records II.- 9.6 A modification of blackjack.- 10. Random walks.- 10.1 Introduction.- 10.2 Classical random walk II.- 10.3 One absorbing barrier.- 10.4 The irresolute spider.- 10.5 Stars I.- 10.6 Closed stopping region.- 10.7 The reflection principle.- 10.8 Ballot problem.- 10.9 Range of a random walk.- 11. Urn models.- 11.1 Randomly filled urn.- 11.2 Pólya's model I.- 11.3 Pólya's model II.- 11.4 Pólya's model III.- 11.5 Ehrenfest's model I.- 11.6 Ehrenfest's game.- 11.7 A pill problem.- 12. Cover times.- 12.1 Introduction.- 12.2 Complete graph.- 12.3 Linear finite graph.- 12.4 Polygon.- 12.5 A false conjecture.- 12.6 Stars II.- 12.7 Inequality for cover times.- 13. Markov chains.- 13.1 Review I.- 13.2 Review II.- 13.3 Random walk: two reflecting barriers.- 13.4 Ehrenfest's model II.- 13.5 Doubly stochastic transition matrix.- 13.6 Card shuffling.- 13.7 Transition times for Markov chains.- 13.8 Reversible Markov chains.- 13.9 Markov chains with homesickness.- 14. Patterns.- 14.1 Runs II.- 14.2 Patterns II.- 14.3 Patterns III.- 14.4 A game for pirates.- 14.5 Penney's game.- 14.6 Waldegrave's problem II.- 14.7 How many patterns?.- 15. Embedding procedures.- 15.1 Drawings with replacement.- 15.2 Repetition of colours.- 15.3 Birthdays revisited.- 15.4 Coupon collecting III.- 15.5 Drawings without replacement.- 15.6 Socks in the laundry.- 15.7 Negative hypergeometric II.- 15.8 The first-to-r game I.- 16. Special topics.- 16.1 Exchangeability III.- 16.2 Martingales.- 16.3 Wald's equation.-16.4 Birth control.- 16.5 The r-heads-in-advance game.- 16.6 Patterns IV.- 16.7 Random permutation of 1's and (?1)'s.- 17. Farewell problems.- 17.1 The first-to-r game II.- 17.2 Random walk on a chessboard.- 17.3 Game with disaster.- 17.4 A rendezvous problem.- 17.5 Modified coin-tossing.- 17.6 Palindromes.- References.
SynopsisWe, the authors of this book, are three ardent devotees of chance, or some- what more precisely, of discrete probability. When we were collecting the material, we felt that one special pleasure of the field lay in its evocation of an earlier age: many of our 'probabilistic forefathers' were dexterous solvers of discrete problems. We hope that this pleasure will be transmitted to the readers. The first problem-book of a similar kind as ours is perhaps Mosteller's well-known Fifty Challenging Problems in Probability (1965). Possibly, our book is the second. The book contains 125 problems and snapshots from the world of prob- ability. A 'problem' generally leads to a question with a definite answer. A 'snapshot' is either a picture or a bird's-eye view of some probabilistic field. The selection is, of course, highly subjective, and we have not even tried to cover all parts of the subject systematically. Limit theorems appear only seldom, for otherwise the book would have become unduly large. We want to state emphatically that we have not written a textbook in probability, but rather a book for browsing through when occupying an easy-chair. Therefore, ideas and results are often put forth without a machinery of formulas and derivations; the conscientious readers, who want to penetrate the whole clockwork, will soon have to move to their desks and utilize appropriate tools., We, the authors of this book, are three ardent devotees of chance, or some­ what more precisely, of discrete probability. When we were collecting the material, we felt that one special pleasure of the field lay in its evocation of an earlier age: many of our 'probabilistic forefathers' were dexterous solvers of discrete problems. We hope that this pleasure will be transmitted to the readers. The first problem-book of a similar kind as ours is perhaps Mosteller's well-known Fifty Challenging Problems in Probability (1965). Possibly, our book is the second. The book contains 125 problems and snapshots from the world of prob­ ability. A 'problem' generally leads to a question with a definite answer. A 'snapshot' is either a picture or a bird's-eye view of some probabilistic field. The selection is, of course, highly subjective, and we have not even tried to cover all parts of the subject systematically. Limit theorems appear only seldom, for otherwise the book would have become unduly large. We want to state emphatically that we have not written a textbook in probability, but rather a book for browsing through when occupying an easy-chair. Therefore, ideas and results are often put forth without a machinery of formulas and derivations; the conscientious readers, who want to penetrate the whole clockwork, will soon have to move to their desks and utilize appropriate tools.
LC Classification NumberQA273.A1-274.9

All listings for this product

Buy it now
Any condition
New
Pre-owned
No ratings or reviews yet
Be the first to write a review