SynopsisThe novel insights, as well as the main drawbacks of each engineered composites material is extensively evaluated taking into account the strong relationship between packaging materials, environmental and reusability concerns, food quality, and nutritional value. Composites, by matching the properties of different components, allow the development of innovative and performing strategies for intelligent food packaging, thus overcoming the limitations of using only a single material. The book starts with the description of montmorillonite and halloysite composites, subsequently moving to metal-based materials with special emphasis on silver, zinc, silicium and iron. After the discussion about how the biological influences of such materials can affect the performance of packaging, the investigation of superior properties of sp2 carbon nanostructures is reported. Here, carbon nanotubes and graphene are described as starting points for the preparation of highly engineered composites able to promote the enhancement of shelf-life by virtue of their mechanical and electrical features. Finally, in the effort to find innovative composites, the applicability of biodegradable materials from both natural (e.g. cellulose) and synthetic (e.g. polylactic acid PLA) origins, with the aim to prove that polymer-based materials can overcome some key limitations such as environmental impact and waste disposal. Audience The book will interest researchers in academia and industry in food science/safety, pharmaceutical and biomedical fields, materials science, especially those specializing in composites and biomaterials, polymer science, plastics engineering and nanotechnology., The book is intended as an overview on the recent and more relevant developments in the application of composite materials for food packaging applications, emphasizing the scientific outcome arising from the physico-chemical properties of such engineered materials with the needs of food quality and safety. Consumers are increasingly conscious of the strong relationship between food quality and health, and thus the request of packaging materials allowing the quality and safety of foods to be highly preserved. As a result, scientists from both academia and industry work to increase the quality of the food storage, with this book meant as a link between scientific and industrial research, showing how the development in composite materials can impact the field. In the book, the inorganic materials employed for the preparation of composite material is extensively analyzed in terms of physico-chemical properties, environmental and reusability concerns, as well as food interaction features, highlighting the importance and the potential limitations of each approach., The novel insights, as well as the main drawbacks of each engineered composites material is extensively evaluated taking into account the strong relationship between packaging materials, environmental and reusability concerns, food quality, and nutritional value. Composites, by matching the properties of different components, allow the development of innovative and performing strategies for intelligent food packaging, thus overcoming the limitations of using only a single material. The book starts with the description of montmorillonite and halloysite composites, subsequently moving to metal-based materials with special emphasis on silver, zinc, silicium and iron. After the discussion about how the biological influences of such materials can affect the performance of packaging, the investigation of superior properties of sp2 carbon nanostructures is reported. Here, carbon nanotubes and graphene are described as starting points for the preparation of highly engineered composites able to promote the enhancement of shelf-life by virtue of their mechanical and electrical features. Finally, in the effort to find innovative composites, the applicability of biodegradable materials from both natural (e.g. cellulose) and synthetic (e.g. polylactic acid - PLA) origins, with the aim to prove that polymer-based materials can overcome some key limitations such as environmental impact and waste disposal.
LC Classification NumberTP374