Table Of ContentIntroduction Data Classification: Basic Concepts and Techniques Classification: Alternative Techniques Association Analysis: Basic Concepts and Algorithms Association Analysis: Advanced Concepts Cluster Analysis: Basic Concepts and Algorithms Cluster Analysis: Additional Issues and Algorithms Anomaly Detection Avoiding False Discoveries
SynopsisIntroduction to Data Mining, Second Edition, is intended for use in the Data Mining course. It is also suitable for individuals seeking an introduction to data mining. The text assumes only a modest statistics or mathematics background, and no database knowledge is needed. Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: Present Fundamental Concepts and Algorithms: Written for the beginner, this text provides both theoretical and practical coverage of all data mining topics. Support Learning: Instructor resources include solutions for exercises and a complete set of lecture slides., Introducing the fundamental concepts and algorithms of data mining Introduction to Data Mining, 2nd Edition , gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth., Introducing the fundamental concepts and algorithms of data mining Introduction to Data Mining, 2nd Edition, gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth., For courses in data mining and database systems. Introducing the fundamental concepts and algorithms of data mining Introduction to Data Mining, 2nd Edition , gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps students understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.