Edition DescriptionRevised edition
Table Of Content1. Introduction to Control Systems. 2. Mathematical Models of Systems. 3. State Variable Models. 4. Feedback Control System Characteristics. 5. The Performance of Feedback Control Systems. 6. The Stability of Linear Feedback Systems. 7. The Root Locus Method. 8. Frequency Response Methods. 9. Stability in the Frequency Domain. 10. The Design of Feedback Control Systems. 11. The Design of State Variable Feedback Systems. 12. Robust Control Systems. 13. Digital Control Systems. Appendix A: MATLAB® Basics. Appendix B: Simulink Basics. Appendix C: Symbols, Units, and Conversion Factors on WWW. Appendix D: An Introduction to Matrix Algebra on WWW. Appendix E: Decibel Conversion on WWW. Appendix F: Complex Numbers on WWW. Appendix G: z-Transfer Pairs on WWW. References. Index.
SynopsisWritten to be equally useful for all engineering disciplines, this book is organized around the concept of control systems theory as it has been developed in the frequency and time domains. It provides coverage of classical control employing root locus design, frequency and response design using Bode and Nyquist plots. It also covers modern control methods based on state variable models including pole placement design techniques with full-state feedback controllers and full-state observers.The book covers several important topics including robust control systems and system sensitivity, state variable models, controllability and observability, computer control systems, internal model control, robust PID controllers, and computer-aided design and analysis.For all types of engineers who are interested in a solid introduction to control systems., Written for a senior-level course, this engineering textbook presents the concepts of feedback control system theory as they have been developed in the frequency and time domains, discussing such topics as robust control systems, state variable models, computer control systems, internal model contro, For an introductory undergraduate course in control systems for engineering students. Written to be equally useful for all engineering disciplines, this text is organized around the concept of control systems theory as it has been developed in the frequency and time domains. It provides coverage of classical control, employing root locus design, frequency and response design using Bode and Nyquist plots. It also covers modern control methods based on state variable models including pole placement design techniques with full-state feedback controllers and full-state observers. Many examples throughout give students ample opportunity to apply the theory to the design and analysis of control systems. Incorporates computer-aided design and analysis using Matlab and Simulink., Written to be equally useful for all engineering disciplines, this book is organized around the concept of control systems theory as it has been developed in the frequency and time domains. It provides coverage of classical control employing root locus design, frequency and response design using Bode and Nyquist plots. It also covers modern control methods based on state variable models including pole placement design techniques with full-state feedback controllers and full-state observers. The book covers several important topics including robust control systems and system sensitivity, state variable models, controllability and observability, computer control systems, internal model control, robust PID controllers, and computer-aided design and analysis. For all types of engineers who are interested in a solid introduction to control systems.
LC Classification NumberTJ216.D67 2004