Quantum Theory, Groups and Representations : An Introduction by Peter Woit (2018, Trade Paperback)

AlibrisBooks (459946)
98.6% positive Feedback
Price:
US $101.70
Approximately£75.81
+ $16.53 postage
Estimated delivery Fri, 1 Aug - Tue, 12 Aug
Returns:
30 days return. Buyer pays for return postage. If you use an eBay delivery label, it will be deducted from your refund amount.
Condition:
New
New Trade paperback

About this product

Product Identifiers

PublisherSpringer International Publishing A&G
ISBN-103319878352
ISBN-139783319878355
eBay Product ID (ePID)3038416491

Product Key Features

Book TitleQuantum Theory, Groups and Representations : an Introduction
Number of PagesXxii, 668 Pages
LanguageEnglish
Publication Year2018
TopicGroup Theory, Physics / Quantum Theory, Algebra / Abstract, Physics / Mathematical & Computational
IllustratorYes
GenreMathematics, Science
AuthorPeter Woit
FormatTrade Paperback

Dimensions

Item Height1.4 in
Item Weight363 Oz
Item Length9.2 in
Item Width6.1 in

Additional Product Features

Intended AudienceTrade
Reviews"The book presents a large variety of important subjects, including the basic principles of quantum mechanics ... . This good book is recommended for mathematicians, physicists, philosophers of physics, researchers, and advanced students in mathematics and physics, as well as for readers with some elementary physics, multivariate calculus and linear algebra courses." (Michael M. Dediu, Mathematical Reviews, June, 2018)
Dewey Edition23
Number of Volumes1 vol.
Dewey Decimal512.2
Table Of ContentPreface.- 1 Introduction and Overview.- 2 The Group U (1) and its Representations.- 3 Two-state Systems and SU (2).- 4 Linear Algebra Review, Unitary and Orthogonal Groups.- 5 Lie Algebras and Lie Algebra Representations.- 6 The Rotation and Spin Groups in 3 and 4 Dimensions.- 7 Rotations and the Spin 1/2 Particle in a Magnetic Field.- 8 Representations of SU (2) and SO (3).- 9 Tensor Products, Entanglement, and Addition of Spin.- 10 Momentum and the Free Particle.- 11 Fourier Analysis and the Free Particle.- 12 Position and the Free Particle.- 13 The Heisenberg group and the Schrödinger Representation.- 14 The Poisson Bracket and Symplectic Geometry.- 15 Hamiltonian Vector Fields and the Moment Map.- 16 Quadratic Polynomials and the Symplectic Group.- 17 Quantization.- 18 Semi-direct Products.- 19 The Quantum Free Particle as a Representation of the Euclidean Group.- 20 Representations of Semi-direct Products.- 21 Central Potentials and the Hydrogen Atom.- 22 The Harmonic Oscillator.- 23 Coherent States and the Propagator for the Harmonic Oscillator.- 24 The Metaplectic Representation and Annihilation and Creation Operators, d = 1.- 25 The Metaplectic Representation and Annihilation and Creation Operators, arbitrary d .- 26 Complex Structures and Quantization.- 27 The Fermionic Oscillator.- 28 Weyl and Clifford Algebras.- 29 Clifford Algebras and Geometry.- 30 Anticommuting Variables and Pseudo-classical Mechanics.- 31 Fermionic Quantization and Spinors.- 32 A Summary: Parallels Between Bosonic and Fermionic Quantization.- 33 Supersymmetry, Some Simple Examples.- 34 The Pauli Equation and the Dirac Operator.- 35 Lagrangian Methods and the Path Integral.- 36 Multi-particle Systems: Momentum Space Description.- 37 Multi-particle Systems and Field Quantization.- 38 Symmetries and Non-relativistic Quantum Fields.- 39 Quantization of Infinite dimensional Phase Spaces.- 40 Minkowski Space and the Lorentz Group.- 41Representations of the Lorentz Group.- 42 The Poincaré Group and its Representations.- 43 The Klein-Gordon Equation and Scalar Quantum Fields.- 44 Symmetries and Relativistic Scalar Quantum Fields.- 45 U (1) Gauge Symmetry and Electromagnetic Field.- 46 Quantization of the Electromagnetic Field: the Photon.- 47 The Dirac Equation and Spin-1/2 Fields.- 48 An Introduction to the Standard Model.- 49 Further Topics.- A Conventions.- B Exercises.- Index.
SynopsisThis text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful tothe reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations., This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.
LC Classification NumberQC19.2-20.85

All listings for this product

Buy it now
Any condition
New
Pre-owned
No ratings or reviews yet
Be the first to write a review