Product Information
The laser power handling capacities of optical systems are determined by the physical properties of their component materials. At low intensity levels these factors are not important, but an understanding of damage mechanisms is fundamental to good design of laser products operating at high power. Laser Induced Damage of Optical Materials presents a comprehensive overview of the damage processes that occur at high laser intensity levels and explains how these factors limit the energy handling capabilities of optical systems. The first two chapters of the book review basic EM theory, and consider optical effects, including absorption and scattering processes, that occur at low and medium energy levels. Chapter 3 describes the damage mechanisms that come into effect when intensity levels are raised. Chapter 4 discusses the central theory for the definition and measurement of the laser-induced damage thresholds of optical materials. This covers both thermal damage and dielectric breakdown as a function of absorption and laser pulse length and spot size. The following chapters are devoted to surfaces and sub-surface damage, coatings, measurement techniques, and special topics such as scaling and the importance of using the correct measurement unit systems. Laser Induced Damage of Optical Materials is an invaluable resource to those working with optical systems where high laser intensity is a factor.Product Identifiers
PublisherTaylor & Francis LTD
ISBN-139780750308458
eBay Product ID (ePID)86395644
Product Key Features
Number of Pages241 Pages
LanguageEnglish
Publication NameLaser-Induced Damage of Optical Materials
Publication Year2003
SubjectEngineering & Technology, Physics
TypeTextbook
AuthorRoger M. Wood
Subject AreaMechanical Engineering
SeriesSeries in Optics and Optoelectronics
FormatHardcover
Dimensions
Item Height234 mm
Item Weight567 g
Additional Product Features
Country/Region of ManufactureUnited Kingdom
Title_AuthorRoger M. Wood