Chapman and Hall/Crc Texts in Statistical Science Ser.: Bayesian Data Analysis by Donald B. Rubin, John B. Carlin, Hal S. Stern, David B. Dunson and Andrew Gelman (2013, Hardcover)

AlibrisBooks (460401)
98.6% positive Feedback
Price:
US $123.32
Approximately£91.13
+ $24.43 postage
Estimated delivery Mon, 4 Aug - Wed, 13 Aug
Returns:
30 days return. Buyer pays for return postage. If you use an eBay delivery label, it will be deducted from your refund amount.
Condition:
New
New Hard cover

About this product

Product Identifiers

PublisherCRC Press LLC
ISBN-101439840954
ISBN-139781439840955
eBay Product ID (ePID)99373245

Product Key Features

Number of Pages675 Pages
LanguageEnglish
Publication NameBayesian Data Analysis
SubjectProbability & Statistics / General, Probability & Statistics / Bayesian Analysis
Publication Year2013
TypeTextbook
Subject AreaMathematics
AuthorDonald B. Rubin, John B. Carlin, Hal S. Stern, David B. Dunson, Andrew Gelman
SeriesChapman and Hall/Crc Texts in Statistical Science Ser.
FormatHardcover

Dimensions

Item Height1.7 in
Item Weight48.9 Oz
Item Length10.2 in
Item Width7.2 in

Additional Product Features

Edition Number3
Intended AudienceCollege Audience
LCCN2013-039507
Dewey Edition21
ReviewsPraise for the Second Edition ... it is simply the best all-around modern book focused on data analysis currently available. ... There is enough important additional material here that those with the first edition should seriously consider updating to the new version. ... when students or colleagues ask me which book they need to start with in order to take them as far as possible down the road toward analyzing their own data, Gelman et al. has been my answer since 1995. The second edition makes this an even more robust choice. --Lawrence Joseph, Montreal General Hospital and McGill University, Statistics in Medicine, Vol. 23, 2004 ... I am thoroughly excited to have this book in hand to supplement course material and to offer research collaborators and clients at our consulting lab more sophisticated methods to solve their research problems. --John Grego, University of South Carolina, USA ... easily the most comprehensive, scholarly, and thoughtful book on the subject, and I think will do much to promote the use of Bayesian methods --David Blackwell, University of California, Berkeley, USA, Praise for the Second Edition it is simply the best all-around modern book focused on data analysis currently available. There is enough important additional material here that those with the first edition should seriously consider updating to the new version. when students or colleagues ask me which book they need to start with in order to take them as far as possible down the road toward analyzing their own data, Gelman et al. has been my answer since 1995. The second edition makes this an even more robust choice. "Lawrence Joseph, Montreal General Hospital and McGill University, Statistics in Medicine, Vol. 23, 2004 I am thoroughly excited to have this book in hand to supplement course material and to offer research collaborators and clients at our consulting lab more sophisticated methods to solve their research problems. "John Grego, University of South Carolina, USA easily the most comprehensive, scholarly, and thoughtful book on the subject, and I think will do much to promote the use of Bayesian methods "David Blackwell, University of California, Berkeley, USA, Praise for the Second Edition … it is simply the best all-around modern book focused on data analysis currently available. … There is enough important additional material here that those with the first edition should seriously consider updating to the new version. … when students or colleagues ask me which book they need to start with in order to take them as far as possible down the road toward analyzing their own data, Gelman et al. has been my answer since 1995. The second edition makes this an even more robust choice. -Lawrence Joseph, Montreal General Hospital and McGill University, Statistics in Medicine, Vol. 23, 2004 … I am thoroughly excited to have this book in hand to supplement course material and to offer research collaborators and clients at our consulting lab more sophisticated methods to solve their research problems. -John Grego, University of South Carolina, USA … easily the most comprehensive, scholarly, and thoughtful book on the subject, and I think will do much to promote the use of Bayesian methods -David Blackwell, University of California, Berkeley, USA, "The second edition was reviewed in the September 2004 issue of JASA and we now stand ten years later with an even more impressive textbook ... truly what Bayesian data analysis should be. ... this being a third edition begets the question ... what's new (when compared with the second edition)? Quite a lot ... overall this is truly the reference book for a graduate course on Bayesian statistics and not only Bayesian data analysis." --Christian Robert (Université Paris Dauphine) on his blog, March 2014 Praise for the Second Edition ... it is simply the best all-around modern book focused on data analysis currently available. ... There is enough important additional material here that those with the first edition should seriously consider updating to the new version. ... when students or colleagues ask me which book they need to start with in order to take them as far as possible down the road toward analyzing their own data, Gelman et al. has been my answer since 1995. The second edition makes this an even more robust choice. --Lawrence Joseph, Montreal General Hospital and McGill University, Statistics in Medicine, Vol. 23, 2004 I am thoroughly excited to have this book in hand to supplement course material and to offer research collaborators and clients at our consulting lab more sophisticated methods to solve their research problems. --John Grego, University of South Carolina, USA ... easily the most comprehensive, scholarly, and thoughtful book on the subject, and I think will do much to promote the use of Bayesian methods --David Blackwell, University of California, Berkeley, USA, "The second edition was reviewed in JASAby Maiti (2004) ... we now stand 10 years later with an even more impressive textbook that truly stands for what Bayesian data analysis should be. ... this being a third edition begets the question of what is new when compared with the second edition? Quite a lot ... this is truly the reference book for a graduate course on Bayesian statistics and not only Bayesian data analysis." --Christian P. Robert, Journal of the American Statistical Association, September 2014, Vol. 109 Praise for the Second Edition ... it is simply the best all-around modern book focused on data analysis currently available. ... There is enough important additional material here that those with the first edition should seriously consider updating to the new version. ... when students or colleagues ask me which book they need to start with in order to take them as far as possible down the road toward analyzing their own data, Gelman et al. has been my answer since 1995. The second edition makes this an even more robust choice. --Lawrence Joseph, Montreal General Hospital and McGill University, Statistics in Medicine, Vol. 23, 2004 I am thoroughly excited to have this book in hand to supplement course material and to offer research collaborators and clients at our consulting lab more sophisticated methods to solve their research problems. --John Grego, University of South Carolina, USA ... easily the most comprehensive, scholarly, and thoughtful book on the subject, and I think will do much to promote the use of Bayesian methods --David Blackwell, University of California, Berkeley, USA, "The second edition was reviewed in JASA by Maiti (2004) ... we now stand 10 years later with an even more impressive textbook that truly stands for what Bayesian data analysis should be. ... this being a third edition begets the question of what is new when compared with the second edition? Quite a lot ... this is truly the reference book for a graduate course on Bayesian statistics and not only Bayesian data analysis." --Christian P. Robert, Journal of the American Statistical Association, September 2014, Vol. 109 Praise for the Second Edition ... it is simply the best all-around modern book focused on data analysis currently available. ... There is enough important additional material here that those with the first edition should seriously consider updating to the new version. ... when students or colleagues ask me which book they need to start with in order to take them as far as possible down the road toward analyzing their own data, Gelman et al. has been my answer since 1995. The second edition makes this an even more robust choice. --Lawrence Joseph, Montreal General Hospital and McGill University, Statistics in Medicine, Vol. 23, 2004 I am thoroughly excited to have this book in hand to supplement course material and to offer research collaborators and clients at our consulting lab more sophisticated methods to solve their research problems. --John Grego, University of South Carolina, USA ... easily the most comprehensive, scholarly, and thoughtful book on the subject, and I think will do much to promote the use of Bayesian methods --David Blackwell, University of California, Berkeley, USA, Praise for the Second Edition e it is simply the best all-around modern book focused on data analysis currently available. e There is enough important additional material here that those with the first edition should seriously consider updating to the new version. e when students or colleagues ask me which book they need to start with in order to take them as far as possible down the road toward analyzing their own data, Gelman et al. has been my answer since 1995. The second edition makes this an even more robust choice. e"Lawrence Joseph, Montreal General Hospital and McGill University, Statistics in Medicine, Vol. 23, 2004 e I am thoroughly excited to have this book in hand to supplement course material and to offer research collaborators and clients at our consulting lab more sophisticated methods to solve their research problems. e"John Grego, University of South Carolina, USA e easily the most comprehensive, scholarly, and thoughtful book on the subject, and I think will do much to promote the use of Bayesian methods e"David Blackwell, University of California, Berkeley, USA
Series Volume Number106
IllustratedYes
Dewey Decimal519.542
Table Of ContentFUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.
Edition DescriptionRevised edition,New Edition
SynopsisWinner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors--all leaders in the statistics community--introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book's web page., Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors-all leaders in the statistics community-introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book's web page.
LC Classification NumberQA279.5

All listings for this product

Buy it now
Any condition
New
Pre-owned
No ratings or reviews yet
Be the first to write a review